Optic Nerve Hypoplasia (ONH) & the Endocrine System

By Kathy Gadomski MSN, RN, CNP March 23, 2012

Objectives

- Describe basic anatomy and physiology of the endocrine system
- Describe basic anatomy and physiology of optic nerve
- Describe role of hormones in regulation of body function
- Discuss relationship between ONH and hypopituitarism
- Discuss management of hormone deficiencies

Pituitary Gland/Hypothalamus/ON *Midline Structures*

Optic Nerve(s)/Chiasm

- The optic nerve is a bundle of nerve fibers that serves as the communication cable between your eyes and your brain
- Optic nerves intersect at the optic chiasm

Optic Nerve/Chiasm & Pituitary Gland

Pituitary Gland & Hypothalamus

Pituitary gland (Hypophysis)

- Anterior pituitary (adenohypophysis)
- Posterior pituitary (neurohypophysis)

Pituitary stalk

 Conduit between hypothalamus and pituitary gland

Pituitary Gland & Hypothalamus

Hypothalamus

- Controls function of pituitary gland
- Controls blood pressure, hunger, thirst, fluid/electrolyte balance, emotions, body temperature regulation, and circadian rhythms (sleep-wake cycles)

Pituitary Gland→"Master Gland"

©Addison Wesley Longman, Inc.

Hypothalamic-Pituitary-Hormone Axis

- Most hormones axes interact to maintain equilibrium
 - Ex: Cortisol necessary for ADH action
- Hormone control via negative feedback loops

Optic Nerve Hypoplasia

Congenital abnormality \rightarrow Small optic discs

- Unilateral or bilateral
- Isolated or in combo with myriad of functional and anatomic abnormalities of the central nervous system
- Varying degrees of visual impairment

Incidence

- Prevalence unknown in USA
- Prior to 1970, considered a rare condition
- Incidence increasing

Hypopituitarism

- Absence or reduction in the function of one or more hormones produced by the pituitary gland and hypothalamus
- "Pan" indicates more than one hormone deficiency
- Incidence:
 - Pan-hypopituitarism $\rightarrow <3:1$ million/year
 - Growth Hormone Deficiency \rightarrow 1 : 3480 children

Causes of Hypopituitarism

Congenital

Birth trauma and/or asphyxia

H/O transected or interrupted hypophyseal stalk

Midline Defect Syndromes

- Septoptic Dysplasia (de Morsier syndrome)
- Absent septum pellucidum or absent corpus callosum
- Cleft lip/palate, encephaloceles

Genetic mutations

 Transcription factors regulating anatomic development of pituitary gland

Idiopathic

Unassociated w/clinical, biochemical, or radiologic abnormalities

Causes of Hypopituitarism

Acquired

- Brain tumors (Craniopharyngioma, most common)
- Cranial irradiation
 - S/P radiation-induced damage to hypothalamus. Pituitary gland relatively resistant to radiation
- Trauma: Especially with prolonged loss of consciousness
- Infiltrative, autoimmune, and metabolic diseases
 - Histiocytosis, sarchoidosis, hemochromatosis, cerebral edema
- Other
 - Brain infections, hydrocephalus, vascular abnormalities of H-P region

Clinical presentation of Hypopituitarism

Neonate

- Hypoglycemia
- Prolonged hyperbilirubinemia
- Turbulent neonatal course
- Micropenis

Older child

- Growth failure
- Diabetes insipidus
- Disorders of pubertal development
- Visual and neurologic complaints
- Characteristic facies and body habitus

Diagnosis of Hypopituitarism

Labs:

- TSH, FT4,
- IGF-1, IGF-BP3,
- AM fasting cortisol
- LH, FSH
- Stimulation testing

MRI:

- Abnl pituitary gland
 - 50% severe GHD
 - 94% MPHD
 - 0% partial GHD
- Hypothalamic dysfunction→not detectable on imaging

Septo Optic Dysplasia

Septo Optic Dysplasia

At least 2 findings:

- Optic Nerve Hypoplasia
- Absent septum pellucidum
- Hypopituitarism

Figure 2 - Axial magnetic resonance imaging of the brain revealing absence of the septum pellucidum

Hypopituitarism & ONH

Hypopituitarism

- 75% to 80% of ONH
- GHD (70%)
- Hypothyroidism (43%)
- Adrenal insufficiency (27%)
- Diabetes insipidus (5%)
- Asymptomatic hyperprolactinemia (62%)
- Puberty may be delayed or precocious

MRI with OHN

- 13% abnl pituitary gland
- 38% absent septum pelludicum

Growth Hormone (GH)

- Causes cell growth and division
- Promotes strong bones
- Helps regulate the body's metabolism by burning fat, building muscle, and maintaining blood sugar levels

H-P-GH Axis

■ Hypothalamus → GHRH

(growth hormone releasing hormone)→Stimulates both synthesis and secretion of growth hormone

$\mathbf{1}$

- Pituitary gland→stores GH
 ↓
- IGF-1→stimulates cell growth

Growth Hormone Deficiency (GHD)

Symptoms

- Neonates: hypoglycemia, micropenis
- Slow growth velocity→short stature
- Reduction of lean body mass/excess of fat
- Delayed bone age

Diagnosis

- IGF-1, IGF-BP3
- GH stimulation test

Treatment

■ GH replacement → Daily SC injections

Cortisol ("Stress Hormone")

- Maintains body energy supply
- Controls the body's reaction to physical stress
- Maintains blood pressure
- Maintains normal blood sugar levels
- Supports immune system
- Severe deficiency → lifethreatening w/severe illness or trauma

H-P-A Axis

■ **Hypothalamus→CRH** (Corticotropin-releasing hormone)

$\mathbf{1}$

- Pituitary Gland→ACTH (Adrenocorticotropic hormone)
- Adrenal Gland→Cortisol

Central Adrenal Insufficiency

Cause

■ ↓ACTH production

Symptoms

- Neonatal choleostasis, jaundice, hypoglycemia
- Increased fatigue and irritability
- Increased duration of illness

Diagnosis

- AM fasting cortisol
- Low dose ACTH stim test

Treatment:

Cortisol replacement

- Hydrocortisone (short halflife)
- Prednisone (long half-life)
- Stress dosing: double/triple oral dose
- Injectable steroids

Thyroid Hormone

Thyroid hormone regulates :

- Metabolism
- Temperature
- Heart rate
- Muscle/bone strength
- Growth: Stimulates growth hormone release and effectiveness
- Intelligence
 - Essential for normal brain growth fetal to 3 yrs. of age
 - Controls synapse movement, neuron formation, growth of mylelin and telling neurons where they belong once formed in the brain

H-P-T Axis

■ Hypothalamus →TRH

(Thyrotropin-releasing hormone)

• Pituitary gland \rightarrow TSH

(Thyroid stimulating hormone)

\checkmark

■ Thyroid gland → thyroxine

Central Hypothyroidism

Cause

 \downarrow TSH \rightarrow decreased thyroid hormone production

Symptoms

- Fatigue
- Dry, itchy skin
- Short stature
- Delayed bone age

TSH, FT4

Diagnosis

Treatment

Thyroid hormone replacement

Levothyroxine tabs

Anti-diuretic Hormone (ADH) (Vasopressin)

■ Hypothalamus→ADH (anti-diuretic hormone)

■ **Pituitary**→ stores ADH

 $\mathbf{\Lambda}$

■ **Kidneys** →conserve water

Diabetes Insipidus (DI)

Diabainein: Greek, "to pass through" Insipidus: Latin, "having no flavor"

- Deficiency of ADH = Central DI
- End organ insensitivity to ADH = Nephrogenic DI
- → results in inability of the kidneys to conserve water
- →leads to frequent urination and pronounced thirst

Diabetes Insipidus

Symptoms: varies with age

- Infants:
 - FTT
 - Irritability
 - Polyuria
- Older children:
 - Polyuria
 - Polydipsia
- Concomitant anterior pituitary hormones deficiencies may mask DI

Diagnosis

- Fasting electrolytes
- Water deprivation test

Treatment

- DDAVP (vasopressin analog)
- Desmopressin (generic)
- SQ, intranasal, tabs
- Dosing goal: uninterrupted activities of daily living (ADL)

Gonadotropin

- LH (luteinizing hormone)
 - stimulates secretion of sex steroids from the gonads
- **FSH** (follicular stimulating hormone)
 - stimulates the maturation of ovarian follicles
 - critical for sperm production

Estrogen and Testosterone

- Necessary for initiation of puberty and maintaining adult body habitus
- Help maintain:
 - Bones
 - Cardiac health
 - Energy levels
 - Menstrual cycles
 - Fertility

H-P-G Axis

- Hypothalamus →GnRH (gonadotropin releasing hormone)
- Pituitary gland →LH / FSH
 ↓
- Ovaries →estrogen
 ↓
- Testes → testosterone

Central Gonadotropin Deficiency

Cause

 ↓LH & FSH → decreased or no production of estrogen or testosterone

Symptoms

 Lack of secondary sexual development

Diagnosis

- LH, FSH
- LHRH stimulation test

Treatment

- Estrogen/progesterone replacement
 - Oral or patch
- Testosterone replacement
 - Depot injection, patch, or gel

References

- Agha, A., Rogers, B., Sherlock, M., O'Kelly, P., Tormey, JP., and Thompson, C. (2004). Anterior Pituitary Dysfunction in Survivors of Traumatic Brain Injury. *The Journal of Clinical Endocrinology & Metabolism*, 89 (10) 929-4936
- Borchet, M. & Garcia-Filion, P. (2008). The Syndrome of Optic Nerve Hypoplasia. *Current Neurology & Neuroscience Reports*, (8), 395-403.
- Chan, J (2003, November). Diabetes Insipidus (Online). Available: <u>www.emedicine.com/ped/topic580.htm</u>
- Geffner, M. (2002). Hypopituitarism in Childhood, *Cancer Control*, 9 (3), 212-222.
- Lifshitz, F (Ed.). (1996). *Pediatric Endocrinology* (3rd Ed.) New York:Marcel Dekker, Inc.
- Porterfield, S. (1997). *Endocrine Physiology*, Vogel, D (Ed.). St Louis: Mosby